

Stabilizing *Ulva sp.* biomass for its future application in food products

Background/introduction/summary

Seaweed is perishable after harvest due to its high moisture content and sensitive compounds, making its use in the food industry challenging¹. Efficient methods to preserve the quality of seaweed will facilitate its usage as a sustainable food ingredient^{1,2}. The aim is to design tailor-made methods for stabilizing *Ulva sp.* and determine how these affect the suitability of *Ulva sp.* as a food ingredient in terms of chemical composition, microstructure, techno functionality & nutritional properties.

Materials and Methods

Conclusions

- Tailor-made post-harvest methods for stabilizing Ulva sp
- Knowledge of specific stabilization effects on chemical, nutritional, microbial and physical features of *Ulva sp*.
- Possible applications of *Ulva sp.* as a food ingredient.

Reference

¹ Albers, E. et al. Influence of preservation methods on biochemical composition and downstream processing of cultivated Saccharina latissima biomass. *Algal Res.* **55**, 102261 (2021).

² Wong, K. & Chikeung Cheung, P. Influence of drying treatment on three Sargassum species. Protein extractability, in vitro protein digestibility and amino acid profile of protein concentrates. J. Appl. Phycol. 13, 51–58 (2001).

Acknowledgements

FORMAS :"

Contact

marv@chalmers.se

Mar Vall-llosera

